ACDC(Automatic Cardiac Diagnosis Challenge,自动心脏诊断挑战赛)是MICCAI 2017举办的竞赛,旨在对心脏电影磁共振成像(cine-MRI)中的左心室(LV,Left Ventricle)、右心室(RV,Right Ventricle)和心肌(Myo,Myocardium)在舒张末期(ED,End Diastole)和收缩末期(ES,End Systole)帧进行分割。精确的心脏图像分割对于评估心脏功能至关重要,如射血分数(EF,Ejection Fraction)、每搏输出量(SV,Stroke Volume)、左心室质量和心肌厚度等,这些指标为心脏疾病的诊断和治疗提供了关键信息。该数据集包含150个病例,分为5个子类别:NOR(正常)、MINF(心肌梗死伴收缩性心力衰竭)、DCM(扩张型心肌病)、HCM(肥厚型心肌病)和ARV(右心室异常),每类30例。每个病例包含一个心动周期的4D nifti格式图像,并标注了舒张末期(ED)和收缩末期(ES)帧。数据由官方划分为100例的训练集和50例的测试集,每个子类在训练集中有20例,测试集中有
xinzang维度 | 3D |
模态 | mri |
任务类型 | segmentation |
解剖结构 | 心脏 |
解剖区域 | 胸部 |
类别数 | 3 |
数据量 | 150 |
文件格式 | .nii.gz |
database
│
├── training
│ ├── patient001
│ │ ├── patient001_4d.nii.gz
│ │ ├── patient001_frame01.nii.gz
│ │ ├── patient001_frame01_gt.nii.gz
│ │ ├── patient001_frame12.nii.gz
│ │ └── patient001_frame12_gt.nii.gz
│ ├── ...
│ └── patient100
│
└── testing
├── patient101
│ ├── patient101_4d.nii.gz
│ ├── patient101_frame01.nii.gz
│ ├── patient101_frame01_gt.nii.gz
│ ├── patient101_frame14.nii.gz
│ └── patient101_frame14_gt.nii.gz
├── ...
└── patient150
统计类型 | 间距 (mm) | 尺寸 |
---|---|---|
最小值 | (0.70, 0.70, 5.0) |
(154, 154, 6) |
中位值 | (1.52, 1.52, 10.0) |
(216, 256, 9) |
最大值 | (1.95, 1.95, 10.0) |
(428, 512, 21) |
@ARTICLE{8360453,
author={Bernard, Olivier and Lalande, Alain and Zotti, Clement and Cervenansky, Frederick and Yang, Xin and Heng, Pheng-Ann and Cetin, Irem and Lekadir, Karim and Camara, Oscar and Gonzalez Ballester, Miguel Angel and Sanroma, Gerard and Napel, Sandy and Petersen, Steffen and Tziritas, Georgios and Grinias, Elias and Khened, Mahendra and Kollerathu, Varghese Alex and Krishnamurthi, Ganapathy and Rohé, Marc-Michel and Pennec, Xavier and Sermesant, Maxime and Isensee, Fabian and Jäger, Paul and Maier-Hein, Klaus H. and Full, Peter M. and Wolf, Ivo and Engelhardt, Sandy and Baumgartner, Christian F. and Koch, Lisa M. and Wolterink, Jelmer M. and Išgum, Ivana and Jang, Yeonggul and Hong, Yoonmi and Patravali, Jay and Jain, Shubham and Humbert, Olivier and Jodoin, Pierre-Marc},
journal={IEEE Transactions on Medical Imaging},
title={Deep Learning Techniques for Automatic MRI Cardiac Multi-Structures Segmentation and Diagnosis: Is the Problem Solved?},
year={2018},
volume={37},
number={11},
pages={2514-2525},
doi={10.1109/TMI.2018.2837502}}