BraTS-TCGA-LGG数据集用于低级别胶质瘤(Low-grade gliomas,LGG)的分割,包含多模态(如T1、T1-Gd、T2、T2-FLAIR)磁共振成像(Magnetic Resonance Imaging,MRI)容积数据(NIfTI格式)。该数据集包含65名患者的387幅图像,涵盖四种模态以及通过GLISTRboost方法分割的标签和人工校验的标签。
toujingbu维度 | 3D |
模态 | mri |
任务类型 | segmentation |
解剖结构 | 低级别胶质瘤 |
解剖区域 | 头部 |
类别数 | 3 |
数据量 | 65 |
文件格式 | .nii.gz |
Pre-operative_TCGA_LGG_NIfTI_and_Segmentations
│
├── TCGA-CS-4942
│ ├── TCGA-CS-4942_1997.02.22_flair.nii.gz
│ ├── TCGA-CS-4942_1997.02.22_GlistrBoost_ManuallyCorrected.nii.gz
│ ├── TCGA-CS-4942_1997.02.22_GlistrBoost.nii.gz
│ ├── TCGA-CS-4942_1997.02.22_t1.nii.gz
│ ├── TCGA-CS-4942_1997.02.22_t1Gd.nii.gz
│ ├── TCGA-CS-4942_1997.02.22_t2.nii.gz
├── TCGA-CS-4944
│ ├── ...
├── ...
统计类型 | 间距 (mm) | 尺寸 |
---|---|---|
最小值 | (1.0, 1.0, 1.0) |
(240, 240, 155) |
中位值 | (1.0, 1.0, 1.0) |
(240, 240, 155) |
最大值 | (1.0, 1.0, 1.0) |
(240, 240, 155) |
@article{bakas2017advancing,
title={Advancing the cancer genome atlas glioma MRI collections with expert segmentation labels and radiomic features},
author={Bakas, Spyridon and Akbari, Hamed and Sotiras, Aristeidis and Bilello, Michel and Rozycki, Martin and Kirby, Justin S and Freymann, John B and Farahani, Keyvan and Davatzikos, Christos},
journal={Scientific data},
volume={4},
number={1},
pages={1--13},
year={2017},
publisher={Nature Publishing Group}
}