EndoVisSub2018-RoboticSceneSegmentation

EndoVisSub2018-RoboticSceneSegmentation数据集是一个用于机器人手术场景分割的图像数据集,属于MICCAI 2018内窥镜视觉(EndoVis)挑战赛的组成部分。该数据集采用腹腔镜图像,重点分割手术器械和解剖结构。它包含各类手术器械和解剖结构的像素级标注,旨在推动机器人手术场景理解和图像分割技术的发展。

内窥镜
可视化图片
EndoVisSub2018-RoboticSceneSegmentation_1.webp
EndoVisSub2018-RoboticSceneSegmentation_1.webp
数据集元信息
维度2D
模态endoscopy
任务类型segmentation
解剖结构腹部
解剖区域腹部
类别数11
数据量7274
文件格式.png,.json,.txt
文件结构
EndoVis_2018_RSS
│
├── Test_data_and_label_release
│   ├── test_data
│   │   ├── seq_1
│   │   ├── seq_3
│
├── Training_data_release_1
│   ├── miccai_challenge_2018_release_1
│   │   ├── seq_1
│   │   │   ├── labels
│   │   │   │   ├── frame000.png
│   │   │   │   ├── frame001.png
│   │   │   │   ├── frame002.png
│   │   │   │   ├── ......
│   │   │   ├── left_frames
│   │   │   ├── right_frames
│   │   │   ├── camera_calibration.txt
│   │   ├── seq_2
│   │   ├── seq_3
│   │   ├── seq_4
│   ├── labels.json
│   ├── miccai_challenge_release_2
│
├── Training_data_release_2
│   ├── miccai_challenge_release_3
│   ├── miccai_challenge_release_4
图像尺寸统计
统计类型 间距 (mm) 尺寸
最小值 - (1280, 1024)
中位值 - (1280, 1024)
最大值 - (1280, 1024)
引用
@misc{allan20202018roboticscenesegmentation,
      title={2018 Robotic Scene Segmentation Challenge}, 
      author={Max Allan and Satoshi Kondo and Sebastian Bodenstedt and Stefan Leger and Rahim Kadkhodamohammadi and Imanol Luengo and Felix Fuentes and Evangello Flouty and Ahmed Mohammed and Marius Pedersen and Avinash Kori and Varghese Alex and Ganapathy Krishnamurthi and David Rauber and Robert Mendel and Christoph Palm and Sophia Bano and Guinther Saibro and Chi-Sheng Shih and Hsun-An Chiang and Juntang Zhuang and Junlin Yang and Vladimir Iglovikov and Anton Dobrenkii and Madhu Reddiboina and Anubhav Reddy and Xingtong Liu and Cong Gao and Mathias Unberath and Myeonghyeon Kim and Chanho Kim and Chaewon Kim and Hyejin Kim and Gyeongmin Lee and Ihsan Ullah and Miguel Luna and Sang Hyun Park and Mahdi Azizian and Danail Stoyanov and Lena Maier-Hein and Stefanie Speidel},
      year={2020},
      eprint={2001.11190},
      archivePrefix={arXiv},
      primaryClass={cs.CV},
      url={https://arxiv.org/abs/2001.11190}, 
}
来源信息

官方网站:
访问官网

下载链接:

登录后下载
需要登录并获得知识星球权限

相关论文:
查看论文

发布日期: 2020-08

统计信息

创建时间: 2025-09-10 16:24

更新时间: 2025-09-10 16:28