SERV-CT数据集是由伦敦大学学院(UCL)外科与介入科学中心(WEISS)开发的手术内窥镜三维重建验证数据集。该数据集包含两组猪组织样本,共计16组立体图像对。每个样本提供完整的相机内外参标定参数、深度图、视差图以及遮挡区域标注。该数据集针对手术内窥镜场景中三维重建算法的验证挑战,特别是在角点特征极少、高反光表面以及存在血液和烟雾的场景下。
内窥镜维度 | 2D |
模态 | endoscopy |
任务类型 | other |
解剖结构 | 腹腔器官 |
解剖区域 | 腹腔 |
数据量 | 16 |
文件格式 | JPG |
└── SERV-CT
├── Experiment_1 - frames 001-008
│ ├── Ground_truth_CT - The reference data using an O-arm CT scan
│ │ ├── DepthL - Left image depth maps (mm depth for each pixel scaled by 256 and stored as 16 bit PNG)
│ │ ├── DepthR - Right image depth maps (mm depth for each pixel scaled by 256 and stored as 16 bit PNG)
│ │ ├── Disparity - left-to-right disparity (pixel disparity scaled by 256 for subpixel accuracy and stored as 16 bit PNG)
│ │ ├── OcclusionL - Colour coded occlusion images
│ │ └── OcclusionR (Yellow - non overlap, blue - outside the reference surface, red - not visible in the right image)
│ ├── Left_rectified - left rectified images (720x576 24-bit colour PNG)
│ ├── Rectified_calibration - JSON calibration files containing P1, P2 and Q, (units are in pixels and mm)
│ └── Right_rectified - right rectified images (720x576 24-bit colour PNG)
└── Experiment_2 - frames 009-016
├── Ground_truth_CT
│ ├── DepthL
│ ├── DepthR
│ ├── Disparity
│ ├── OcclusionL
│ └── OcclusionR
├── Ground_truth_RGB - The reference data using a Creaform RGB scan
│ ├── DepthL
│ ├── DepthR
│ ├── Disparity
│ ├── OcclusionL
│ └── OcclusionR
统计类型 | 间距 (mm) | 尺寸 |
---|---|---|
最小值 | 不适用 |
(720, 576) |
中位值 | 不适用 |
(720, 576) |
最大值 | 不适用 |
(720, 576) |
@article{edwards2020serv,
title={SERV-CT: A disparity dataset from CT for validation of endoscopic 3D reconstruction},
author={Edwards, PJ and Psychogyios, Dimitris and Speidel, Stefanie and Maier-Hein, Lena and Stoyanov, Danail},
journal={arXiv preprint arXiv:2012.11779},
year={2020}
}