COVID_CT_COVID-CT

There are a total of 746 lung CT images in COVID_CT_COVID-CT, among which 349 are of COVID-19 infection and 397 are of non-COVID-19 infection. Default divisions for train, val and test data are provided. In addition, for each CT image of COVID-19 infection, this dataset provides a basic information description of the corresponding patient (including the patient's location, age, disease description, brief medical history, onset time and other symptoms). It should be particularly noted that in the dataset, the original CT is 3D, but only the slices that the doctor considers to have key features in each 3D CT data were selected. According to radiologists, this will not significantly affect the accuracy of diagnostic decisions, especially under conditions like this dataset that contain sufficient clinical information. This dataset aims to promote the research on the recognition algorithm of COVID-19 infection in lung CT (2D).

xiongbu
可视化图片
COVID_CT_COVID-CT_1.webp
COVID_CT_COVID-CT_1.webp
COVID_CT_COVID-CT_2.webp
COVID_CT_COVID-CT_2.webp
数据集元信息
维度2D
模态ct
任务类型classification
解剖结构肺部
解剖区域胸部
类别数2
数据量746
文件格式JPG, PNG
文件结构
COVID_CT_COVID-CT
├── Data-split
│   ├── COVID
│   │   ├── testCT_COVID.txt
│   │   ├── trainCT_COVID.txt
│   │   ├── valCT_COVID.txt
│   ├── NonCOVID
│   │   ├── CT_NonCOVID_test_id.csv
│   │   ├── CT_NonCOVID_train_id.csv
│   │   ├── CT_NonCOVID_val_id.csv
│   │   ├── testCT_NonCOVID.txt
│   │   ├── trainCT_NonCOVID.txt
│   │   ├── valCT_NonCOVID.txt
├── Images-processed
│   ├── CT_COVID
│   │   ├── 2019-novel-Coronavirus-severe-adult-respiratory-dist_2020_International-Jour-p3-89%0.txt
│   │   ├── ...
│   ├── CT_NonCOVID
│   │   ├── 0.jpg
│   │   ├── ...
├── COVID-CT-MetaInfo.xlsx
├── NonCOVID-CT-MetaInfo.csv
├── README.md
图像尺寸统计
统计类型 间距 (mm) 尺寸
最小值 - [148,61]
中位值 - [404,299]
最大值 - [1637,1225]
引用
@article{zhao2020COVID-CT-Dataset,
  title={COVID-CT-Dataset: a CT scan dataset about COVID-19},
  author={Zhao, Jinyu and Zhang, Yichen and He, Xuehai and Xie, Pengtao},
  journal={arXiv preprint arXiv:2003.13865}, 
  year={2020}
}
来源信息

官方网站:
访问官网

下载链接:

登录后下载
需要登录并获得知识星球权限

百度网盘:

登录后访问
需要登录并获得知识星球权限

相关论文:
查看论文

发布日期: 2020-06-17

统计信息

创建时间: 2025-09-13 03:37

更新时间: 2025-09-13 03:48